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PLASTIC FLOW OFAXIALLY-SYMMETRIC NOTCHED BARS
PULLED IN TENSION
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Polish Academy of Sciences, Warsaw, Poland

Abstract-Theoretical and experimental results are presented for plastic flow of axially symmetric notched
bars. The slip-line fields have been calculated numerically using the Shield theory of axially symmetric plastic
flow. The load factors obtained from the theoretical solutions differ only slightly from those for plane strain
conditions. Two sets of specimens were investigated in order to obtain the actual load factors for V-shaped
and rounded notches. The agreement between the theory and experimental results is satisfactory. In the last
series of experiments the influence of the diameter of the bar outside the notch was investigated and later
compared with the theoretically estimated value of that diameter.

INTRODUCTION

THE PROBLEM of the stress distribution and mode of deformation of notched bars under
going tension is rather well elaborated for plane strain or plane stress conditions only.
For axially symmetric notched bars the solution based on the von Mises yield criterion
and the associated flow rule is still unavailable, since the system of equations is not
hyperbolic and therefore the method of characteristics cannot be used.

In the present paper a solution is presented for the Tresca yield criterion with the
associated flow rule, along with the Haar-Karman hypothesis. The latter requires that
in the plastic state the circumferential stress be equal to one of the principal stresses in
the meridional plane.

Shield [1] has shown that such assumptions lead to a hyperbolic system of equations,
and presented a complete solution of indentation of a semi-infinite plastic body by a
flat axially symmetric punch. McClintock [2] has pointed out, that by simply changing
the signs and indexes of stresses and velocities, the stress and velocity field can be
obtained, corresponding to the plastic state of axially symmetric bar with a slit-shaped
notch.

This paper contains a theoretical and experimental analysis of the yield point load
for axially symmetric bars with V-shaped and various rounded notches. The theoretical
part of the analysis includes numerical calculations of the yield load for V-notches of
the total angle 2)1 = 60° and 120°, for a circular notch, and for a notch with a short
cylindrical part bounded by two rounded parts. For each of these solutions an appropriate
velocity field and the initial plastic deformation of the free surface of the notch may be
found. All stress fields may be extended into the rigid parts of the bar outside the notch
in the manner presented by Shield for the punch indentation problem. Thus solutions
are complete, provided the diameter of the bar outside the notch is so large that the
boundary of the extended slip line field lies entirely within the contour of the bar in
meridional cross section. Since calculations of the extended stress field are very laborious,
simple evaluation of the bar diameter for practical purposes is proposed.
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Experiments were performed to determine the yield point and ultimate load of the
bars with various notch parameters and to compare their results with the theoretical
values. The influence of the bar diameter outside the notch was also investigated.

BASIC EQUATIONS

A detailed analysis of the axially symmetric flow of a rigid-plastic material obeying
the Tresca yield criterion and the associated flow rule is given by Shield [1]. To make
this paper sufficiently self-contained a number of necessary equations will be given below.

The stresses at any point of the plastic region of the axially symmetric notched bar
are represented in the principal stress space l1 1l1 211 3 by points lying on that edge of the
Tresca hexagonal prism for which

(1)

and

(2)

where l1 1 and l12(l11 > (12) are the principal stresses in the meridional plane, and l13 = l10

is the circumferential stress.

z

FIG. 1. Slip-line convention.

Since equations (1) and (2) impose two independent conditions on the four stress
components l1r l1zTrz and l10, the state of stress may be expressed by two independent
parameters 9 and p, whose meaning is indicated in Fig. 1. Consequently we can write

l1z = p+k sin 29,

l1r = p-k sin 29,

Trz = k cos 29,

l10 = p-k.
} (3)

The substitution of the expressions (3) into the equilibrium equations yields a hyper
bolic system of quasi-linear partial differential equations with two unknown functions
p, 9 and two independent variables r, z. The equations of the characteristics of this system
have the form

dz
dr = tan 9,

k
dp-2kd9 = -(dz-dr)

r
(4a)
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for the first family of lines, called later the IX-family, and
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dz
- = -cot8
dr '

k
dp+2k d8 = --(dz+dr)

r
(4b)

for the second family, called the p-family.
The vector of the flow velocity in the meridional plane r, z can be expressed by the

components v~ and vp along the IX and p lines, respectively. If use is made of the isotropy
condition and of the incompressibility condition, these components must satisfy the
equations

dv~-vp d8 = -(v~ cot 8-vp)dz/2r

dvp + v~ d8 = (v~ cot 8 - vp)dr/2r

along an IX-line }

along a p-line.
(5)

Equations (5) were given by Hill [3] and later by Shield [1].
The solution of particular problems consists in numerical integration of the equations

(4) and (5) by means of the well known Masseau method. Solving subsequently appro
priate boundary value problems for stresses and velocities, we finally obtain the stress
and velocity field in the plastic region of the bar.

V-NOTCHED BARS

Let us consider an axially symmetric bar with a V-shaped notch with the total angle
2y (Fig. 2). The bar is loaded by two opposite tensile forces. Numerical solutions were
obtained for notches with angles 2y = 60° and 120°. For the slit-notch (2y = 0°) all neces
sary values were taken from Shield's solution [1] for the punch indentation problem.
The procedure of solution is described for the 120°-notch.

The yield point load was obtained from the slip-line field shown in Fig. 3. On the
free edge AB we have ITt = 2k, 1T2 = 1T3 = 0, and therefore p = k and 8 = y-(n/4).

z/R z

z

p

FIG. 2. V-notched bar. ~nJTrf(ll
"z/2k

FIG. 3. Slip-line field for 2y = 120°.
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(6)

Thus, solving the Cauchy boundary value problem the field of characteristics in the region
ABC can be found. The position of the point B is not known initially and will be deter
mined later by the condition that the IX-line starting from B must pass through E. The
f1-line AC, along which the values of p and 9 are now known, and the known value
9 = nj4 along AE, constitute the mixed boundary value problem and therefore define
the field ACDE. The point A is a singular point since the value of 9 at AB is different
from the value at A on AE. The angle of the fan CAD at A is equal to nj2 - y.

Having found the values of p along AE, we can obtain {1z from the first expression (3).
The distribution of {1z along AE is shown in Fig. 3. The total load of the incipient plastic
flow can be obtained by means of numerical integration from the following relation

p* = 2nfR {1 r dr.
o z

The yield point load factor of the notched bar will be defined as the ratio

f = P*jPo, (7)

where Po = 2nR 2k is the yield point load of the smooth bar with the diameter 2R.
Figure 4 shows the slip-line field for the notch angle 2y = 60° and the distribution

of the stress {1z along the radius in the minimal cross section of the bar.

FIG. 4. Slip-line field for 2'/ = 60°.

The obtained load factors for 2y = 120° and 60° are marked in Fig. 5. Their values
aref600 = 2·32 for 2y = 60° andfl200 = 1,65 for 2y = 120°. For slit notch (2y = 0°) the
value of the factor fo' = 2·85 is taken from Shield's solution [1] for the punch indenta
tion problem. For 2y = 180° the load factor is, of course, equal to unity. The line plotted
through the calculated points gives the value of the load factor for an arbitrary angle of
the notch. The other line shows the load factor values for plane strain bars with V-shaped
notches.
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FIG. 5. Theoretical and experimental values of the load factors.
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Finally let us consider the velocity field compatible with the field of characteristics
ABCDE and satisfying the velocity boundary conditions. The rigid parts of the bar move
with the velocity Vo as shown in Fig. 2. However, it is more convenient to assume, without
loss of generality, that the upper part of the bar is fixed (v = 0) and the lower part moves
downwards with velocity 2vo. Such conditions can be obtained by superposition of the
rigid translation of the bar downwards with the velocity Vo.

Since it is assumed that the IX-line BCDE separates the regions of plastically deform
ing and non-deforming material the normal velocity vp across this line must be zero. Thus
along BCDE vp = 0 and the first of equations (5) gives

va = A/Jr on BCDE,

where A is a constant. To avoid an infinite value of Va at E, the constant A must be set
equal to zero. Thus

va =: vp = 0 on BCDE.

The second condition for velocities is that Vz = - Vo or

Va + vp = - (J2)vo along AE.

(8)

(9)

The conditions (8) and (9) constitute the mixed boundary value problem for the velocity
equations (5), and define the velocity field in ABCDE. Since the velocity problem is
similar to that considered by Shield [1], the same procedure may be used in our case to
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determine the velocity field. In the present study the velocity field has not been calcu
lated, and therefore the numerical check of the evident inequalities

could not be made.
McClintock [2] pointed out that the slip-line field, extended into the non-deforming

region given by Shield, can also be applied to the case of the bar with a slit-shaped notch.
It is evident that for an arbitrary angle y of the notch there exists the stress field extended
into the rigid part of the bar. Thus the solutions presented above are statically admissible,
provided the diameter outside the notch is not smaller than the largest diameter of the
extended stress field.

Thus the theoretical value of the diameter 2C can be obtained only on the basis of
the extended slip-line field. The amount of work connected with this procedure demands
the use of digital computers.

However, for practical purposes, the diameter 2C can be evaluated in a simple manner
from the analogous solutions for the plane-strain notched bars. As shown by Bishop [4],
in plane strain conditions the extended slip-line field can be easily obtained graphically,
giving the required H/h ratio (Fig. 6). Let us assume that the required ratio of the cross

FIG. 6. Plane strain notched bar.

section areas FmaJFmio is the same for axially symmetric and plane strain bars with the
same parameters of the notch. For axially symmetric bar Fmax = nC2

, Fmio = nR2
, and

for plane strain bar Fmax = bH, Fmio = bh. Therefore, we obtain the relation

C/R = ~(H/h), (10)

from which the required ratio C/R can be estimated on the basis of the H/h ratio for
plane strain bar with the same notch.

For example, for a plane strain bar with a slIt-notch Bishop [4] found H/h = 8'67,
whereas for an axially symmetric bar the extended stress field [1] gives C/R = 3·2.
Formula (10) gives the value C/R = ~8'67 = 2'94, which is 8·1 per cent smaller than the
exact value.

Figure 7 shows the value of the C/R ratio for V-notched axially symmetric bars with
various angles y. The diagram was obtained by means of the relation (10) from the
analogous diagram for the H/h ratio given by McClintock [2] for plane strain bars.

Experiments were performed to determine the yield point and ultimate load for
V-notched axially symmetric bars with various angles y. The extension of the plastically
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FIG. 7. Theoretical values of the C/R ratio for V-notched bars.

deformed part of the free surface was also investigated. The specimens had the dimen
sions R = 15 mm and C = 30 mm. The angle y had the values 75°, 60°, 45° and 30°.
Moreover, a specimen with no notch y = 90° was prepared with the radius R = 15 mm.
The material was technically pure aluminium (99'7 % AI).

A universal hydraulic testing machine and hinge-type fittings were used in order to
avoid the possible bending of the bar. Deformations were recorded by means of an
Amsler mechanical extensometer with a 0·01 mm division dial gauge and 60 mm gauge
length.

PlFa
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All dimensions in mm.
I
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£/ongation scale
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FIG. 8. Initial parts of the stress-strain diagrams.
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Figure 8 shows the initial parts of the obtained stress-strain diagrams. Arrows
indicate the estimated average yield point stresses in the minimum section of the bar.
The actual yield point load factor for a given I' is equal to h.p. = yy/Yo

, where y,. is the
yield stress for the notched bar and yo the yield stress for the smooth bar (I' = 90°); In
the same manner the actual ultimate load factor can be obtained. If R y is the maximum
nominal stress for the notched bar, and RO is the maximum nominal stress for the smooth
bar (I' = 90°), the ultimate load factor is fu.1. = Ry/W. Both actual load factors obtained
from experimental investigation are shown in Fig. 5.

The theoretical velocity solution presented above indicates that the plastically deform
ing region is bounded by the slip-lines BCDE shown in Figs. 3 and 4. The actual deform
ing region is, however, larger as shown in Fig. 9, where the upper rigid part of the
specimen is assumed to be immovable. This effect can be attributed to the strain hardening
of the material, and assumed simplifications in the theoretical solution.

,

.-J
I

Contour of the specimen I'

at the ultimate load

,

FIG. 9. Deformation mode of a V-notched bar.

BARS WITH ROUNDED NOTCHES

In this section notches are investigated, with the cylindrical central part bounded by
two rounded parts (Fig. 10). Theoretical solutions are obtained for a circular notch with
a = Po and for a notch with a = 0·8R. The ratio Po/R 0·2 is constant for all notches.

Figure 11 shows the slip-line field for the circular notch (a = Po) and the distribution
of the axial stress CTz in the minimum cross section OB. The method of solution is similar
to that presented above for the V-shaped notch, except that there is no singularity in B.

In the slip-line field for a rounded notch (a = 0'8R), shown in Fig. 12, the triangle ABC
represents the region of uniaxial tension with CTz = 2k, CTr = CTe = O. The boundary
conditions on BD (p k, [1 = n/4-1') define the stress field BED. Obtained values of p
and [1 along BE and given values along BC (p = k, [1 n/4) constitute the characteristic
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problem for the field BCFE. Finally, in the curvilinear triangle COF we have the mixed
boundary value problem, since 8 = n/4 along the non-characteristic line co.

FIG. 10. Bar with rounded notch.

zlR
IJo5

FIG. II. Slip-line field for circular notch.

The velocity solution can be obtained in the same manner as for the V-notch.
The yield point· load factor is given by (7), where Po = 2nR2k is the yield load for

the bars with (a - Po) ~ R. The theoretical values of the factor for various a/R are repre
sented by lower line in Fig. 13. The upper line shows the yield point load factor for plane
strain bars with analogous notches. It is interesting to note that plane strain factors are
now larger than factors for axial symmetry, whereas they were smaller for V-shaped
notches (Fig. 5).
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FIG. 12. Slip-line field for rounded notch.
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FIG. 13. Theoretical and experimental values of the load factors.

The actual yield point and ultimate load factors were investigated using mild steel
(0'15 %C) specimens with 2R = 5 mm, Po = 1 mm and various ajR ratios shown in
Fig. 14. This figure shows the initial parts of the stress-strain diagrams, from which the
average yield point stresses Y were estimated. Both actual factors f y .p and fu.l. were
obtained in the same manner as for V-notched specimens. The experimental points are
shown in Fig. 13.

The last set of specimens was used to investigate the influence of the CjR ratio on
the yield point and ultimate load of the bars with the circular notch (a = Po). The radii
Po = 1 mm and 2R = 5 mm, and the material were the same as in the previous test.
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FIG. 14. Initial parts of the stress-strain diagrams. FIG. 15. Initial parts of the stress-strain diagrams.

The chosen values of the CjR are shown in Fig. 15. The yield loci were estimated from
the initial parts of the stress-strain diagrams presented in Fig. 15. The experimental
points for yield locus average stress O'y.p. and ultimate nominal stress lTu .!. are marked in
Fig. 16. The theoretical value of the CjR ratio was found from the relation (10) to be

M IJO
C/R
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Material;mild s~1

6OC£--+--+----+--I-+--+---+-.---T----;o;~y.p.=fI. IFD

-f

P!FD-_z DimenSions in mm.
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FIG. 16. Influence of the C/R ratio on the load factors.

C/Rtheor = 1·85. The ratio H/h. for the analogous plane strain problem was obtained
graphically, using the method proposed by Bishop [4].
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FINAL REMARKS

For practical purposes an important feature of the presented axially symmetric solu
tions is that they differ only slightly from those for plane strain conditions. The largest
difference is 9·8 per cent for the slit-notch. The load factors obtained for axially sym
metric bars can be larger or smaller than the load factors for plane strain bars, depend
ing on the shape of the notch.

The agreement between the theory and the experimental results is satisfactory. It is
important to note that for materials used in the present experiments, the theoretical load
factors obtained for perfectly plastic material, are also valid for the ultimate load of the
notched bars.
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Resume--Des resultats tMoriques et experimentaux sont presentes pour I'ecoulement plastique d'une barre
entaillee axiellement symmetrique. Les champs de ligne de glissement ont ete numeriquement calcules employant
la tMorie de Shield de I'ecoulement plastique axiellement symmetrique. Les facteurs de chargement obtenus des
solutions theoriques ne different que legerement de ceux des conditions de contrainte plane. Deux series de
specimens ont ete investiguees alin d'obtenir les facteurs de chargement pour des entailles en forme de V et
arrondies. Les similitudes entre la tMorie et les resultats experimentaux sont satisfaisantes. Dans la derniere
serie d'experiments I'influence du diametre de la barre hors de l'entaille a ete investiguee et comparee, plus tard,
it la valeur estimee theoriquement de ce diametre.

Zusammenfassung-Theoretische und Versuchs Ergebnisse sind flir das plastische Fliessen von achsensym
metrischen gekerbten SHiben gegeben. Die Gleitungslinienfelder wurden berechnet bei Verwendung der Schild
theorie flir achsensymmetrisches plastisches Fliessen. Die Belastungsfaktoren, erhalten von den theoretischen
Losungen, sind nur geringftigig unterschiedlich von denen flir FHichenbeanspruchungs Bedingungen. Zwei
Probensatze wurden untersucht, urn die tatsachlichen Belastungsfakoren flir V-geformte und abgerundete
Kerbe zu erhalten. Die Obereinstimmung zwischen den Theoretischen und Versuchs Ergebn ssen ist zufrieden
stelland. In der letzten Serie der Versuche, der Einfluss des Durchmessers des Stabes ausserhalb der Kerbe
wurde untersucht und spater mit den theoretisch geschatzten Werten dieses Durchmessers verglichen.

A6cTpaKT-)l,aIOTcll TeopeTH'IecKHe H 3KcIIepHMeHTaJIbHbIe pe3YJIbTaTbI .L\JIlI llnaCTH'IeCKOrO Te'leHHlI
CHMMeTpH'IeCKHX OTHOCHTeJIbHO OCH Ha.L\pe3aHHblX 6pYCKOB (cTeplKHell). nOJIlI JIHHHH CKonblKeHHlI BbI'IH
cnlllOTCll IIpHMeHeHHeM TeopHH ocecHMMeTpH'IeCKOrO IIJIaCTH'IeCKOrO Te'leHHlI IIIHJIb.L\a.
<1>aKTopbI Harpy3KH, IIOJIy'leHHhle TeopeTH'IeCKHMH peIlleHHlIMH TonbKO CJIerKa OTJIH'IaIOTClI OT <!>aKTopoB
.L\JIlI YCJIOBHH nJIOCKOH .L\e<!>opMaUHH. )l,JIlI Toro, 'ITo6hI IIOJIy'lHTh .L\eHCTBHTeJIbHble <!>aKTophI Harpy3KH
.L\JIlI V-06pa3HbIx H Kpyrobblx Hape~OB HCC.L\e.L\OBaJIOCb .L\Ba Ha60pa o6pa3uoB. ComacoBaHHocTb MelK.L\y
TeopHeH H 3KCIIepHMeHTaJIbHbIMH pe3YJIhTaTaMH-y.L\OBJIeTBOpHTeJIbHa. B IIOCJIe.L\HHX cepHlIX 3KcnepH
MeHTOB HccnenOBanOCb BJIHlIHHe .L\HaMeTpa 6pycKa cHapylKH Ha.L\pe3a H n03lKe OHO cpaBHHBaJIOCh C
TeOpeTH'IeCKH nO.L\C'IHTaHHbIM Bbl'lHcneHHeM 3Toro .L\HaMeTpa.


